Posts

Kate Lancaster and the Vulcan Pulse Laser

vulcan-laser

Just to probe the depths of my inner nerd (like even bigger than the nerds in Revenge of the Nerds, part ONE), I found this great video today through Physics World – Kate Lancaster, a physicist at the Vulcan laser at the the Central Laser Facility in the UK, did an interview with a Physics World.  I’ve embedded it below.

To give you an idea of how unfathomably powerful the Vulcan laser is one zetawatt per centimeter, or 1,000,000,000,000,000,000,000 watts.  I had to look that up – I had no idea how many zeroes a zeta had!  It’s 1X10^21 watts per centimeter.  That is unbefreakinglievably powerful.  My mind cannot comprehend it – in the video, the narrator/interviewer says that the Vulcan laser is as powerful as all of the sunlight on Earth, condensed into the size of the tip of a human hair.

Check out the video – it is only for the super-geeks among us – but it’s a quick little awesome interview about the Vulcan laser and what goes on there.  I just wish they included the name of the interviewer!  What a thing to leave out!

The World’s Smallest Incandescent Lamp

planck

The world’s smallest incandescent lamp has been created. And I don’t mean that they’ ve created a little mini table lamp that has a little red shade and a tiny, tiny pull string either.

Scientists at UCLA Physics and Astronomy have created an incandescent lamp with a single carbon nanotube that’s 100 atoms long.  How on EARTH did they get 100 atoms stuck together?  Do you need wee little needle-nose pliers?

<crickets>

But all tomfoolery aside, this little tiny incandescent lamp has some interesting properties.  The little filament inside the lamp is so very small that it allows scientists to study it as both a quantum mechanical molecular model, but large enough in scale that it can still be applied to the laws of thermodynamics.  Do you know what Planck’s Law is?  It’s a measure of the amount of all wavelengths of light that are emitted from a black-body radiator at a given temperature.  Don’t puke:
planck
It’s quantum physics stuff.  Alas, let’s just read the press release, shall we?

In an effort to explore the boundary between thermodynamics and quantum mechanics — two fundamental yet seemingly incompatible theories of physics — a team from the UCLA Department of Physics and Astronomy has created the world’s smallest incandescent lamp.

The team, which is led by Chris Regan, assistant professor of physics and astronomy and a member of the California NanoSystems Institute at UCLA, and includes Yuwei Fan, Scott Singer and Ray Bergstrom, has published the results of their research May 5 in the online edition of the journal Physical Review Letters.

Thermodynamics, the crown jewel of 19th-century physics, concerns systems with many particles. Quantum mechanics, developed in the 20th century, works best when applied to just a few. The UCLA team is using their tiny lamp to study physicist Max Planck’s black-body radiation law, which was derived in 1900 using principles now understood to be native to both theories.

Planck’s law describes radiation from large, hot objects, such as a toaster, the Sun or a light bulb. Some such radiation is of fundamental and current scientific interest; the thermal radiation left over from the Big Bang, for instance, which is called the cosmic microwave background, is described by Planck’s law.

The incandescent lamp utilizes a filament made from a single carbon nanotube that is only 100 atoms wide. To the unaided eye, the filament is completely invisible when the lamp is off, but it appears as tiny point of light when the lamp is turned on. Even with the best optical microscope, it is only just possible to resolve the nanotube’s non-zero length. To image the filament’s true structure, the team uses an electron microscope capable of atomic resolution at the Electron Imaging Center for Nanomachines (EICN) core lab at CNSI.

With less than 20 million atoms, the nanotube filament is both large enough to apply the statistical assumptions of thermodynamics and small enough to be considered as a molecular — that is, quantum mechanical — system.

“Our goal is to understand how Planck’s law gets modified at small length scales,” Regan said. “Because both the topic (black-body radiation) and the size scale (nano) are on the boundary between the two theories, we think this is a very promising system to explore.”

The carbon nanotube makes an ideal filament for this experiment, since it has both the requisite smallness and the extraordinary temperature stability of carbon. While the intensive study of carbon nanotubes only began in 1991, using carbon in a light bulb is not a new idea. Thomas Edison’s original light bulbs used carbon filaments.

The UCLA research team’s light bulb is very similar to Edison’s, except that their filament is 100,000 times narrower and 10,000 times shorter, for a total volume only one one-hundred-trillionth that of Edison’s.

My guess is that we”ll hear about these again.